Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3124718.v1

ABSTRACT

Vaccines have been central in ending the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants increasingly escape first-generation vaccine protection. To fill this gap, live particle-based vaccines mimicking natural infection aim at protecting against a broader spectrum of virus variants. We designed “single-cycle SARS-CoV-2 viruses” (SCVs) that lack essential viral genes, possess superior immune-modulatory features and provide an excellent safety profile in the Syrian hamster model. All intranasally vaccinated animals were fully protected against an autologous challenge with SARS-CoV-2 virus using an Envelope-gene-deleted vaccine candidate. By deleting key immune-downregulating genes, sterilizing immunity was achieved with an advanced candidate without virus spread to contact animals. Furthermore, vaccinated animals were protected from SARS-CoV-2 characteristic tissue inflammation and lung damage. Hence, SCVs have the potential to induce broad and durable protection against COVID-19 superior to a natural infection.


Subject(s)
COVID-19 , Inflammation , Lung Diseases
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.17.541127

ABSTRACT

Vaccines have been central in ending the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants increasingly escape first-generation vaccine protection. To fill this gap, live particle-based vaccines mimicking natural infection aim at protecting against a broader spectrum of virus variants. We designed "single-cycle SARS-CoV-2 viruses" (SCVs) that lack essential viral genes, possess superior immune-modulatory features and provide an excellent safety profile in the Syrian hamster model. Full protection of all intranasally vaccinated animals was achieved against an autologous challenge with SARS-CoV-2 virus using an Envelope-gene-deleted vaccine candidate. By deleting key immune-downregulating genes, sterilizing immunity was achieved with an advanced candidate without virus spread to contact animals. Hence, SCVs have the potential to induce a broad and durable protection against COVID-19 superior to a natural infection.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.04.521629

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and its subvariants (BA.2, BA.4, BA.5) represent the most commonly circulating variants of concern (VOC) in the coronavirus disease 2019 (COVID-19) pandemic in 2022. Despite high vaccination rates with approved SARS-CoV-2 vaccines encoding the ancestral spike (S) protein, these Omicron subvariants have collectively resulted in increased viral transmission and disease incidence. This necessitates the development and characterization of vaccines incorporating later emerging S proteins to enhance protection against VOC. In this context, bivalent vaccine formulations may induce broad protection against VOC and potential future SARS CoV 2 variants. Here, we report preclinical data for a lipid nanoparticle (LNP) formulated RNActive N1-methylpseudouridine (N1m{Psi}) modified mRNA vaccine (CV0501) based on our second-generation SARS-CoV-2 vaccine CV2CoV, encoding the S protein of Omicron BA.1. The immunogenicity of CV0501, alone or in combination with a corresponding vaccine encoding the ancestral S protein (ancestral N1m{Psi}), was first measured in dose-response and booster immunization studies performed in Wistar rats. Both monovalent CV0501 and bivalent CV0501/ancestral N1m{Psi} immunization induced robust neutralizing antibody titers against the BA.1, BA.2 and BA.5 Omicron subvariants, in addition to other SARS-CoV-2 variants in a booster immunization study. The protective efficacy of monovalent CV0501 against live SARS-CoV-2 BA.2 infection was then assessed in hamsters. Monovalent CV0501 significantly reduced SARS CoV 2 BA.2 viral loads in the airways, demonstrating protection induced by CV0501 vaccination. CV0501 has now advanced into human Phase 1 clinical trials (ClinicalTrials.gov Identifier: NCT05477186).


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.28.489537

ABSTRACT

Variant of concern (VOC) Omicron-BA1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and multiple animal models is urgently needed. Here, we characterized Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in naive hamsters, ferrets and hACE2-expressing mice, and in immunized hACE2-mice. We demonstrate a spike mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In Syrian hamsters, Delta showed dominance over Omicron-BA.1 and in ferrets, Omicron-BA.1 infection was abortive. In mice expressing the authentic hACE2-receptor, Delta and a Delta spike clone also showed dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naive K18-hACE2 mice, we observed Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of both Delta and Omicron-BA.1 replication and pathogenicity. Finally, the Omicron-BA.1 spike clone was less well controlled by mRNA-vaccination in K18-hACE2-mice and became more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.

5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.20.485440

ABSTRACT

Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS CoV-2 variants could improve COVID-19 control. We compared monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S protein, primarily in a transgenic mouse model and a Wistar rat model. The low-dose bivalent mRNA vaccine contained half the mRNA of each respective monovalent vaccine, but induced comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, specific CD4+ and CD8+ responses, and fully protected transgenic mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduced viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized Wistar rats also contained neutralizing antibodies against the B.1.1.529 (Omicron BA.1) variant. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins is a feasible approach for increasing the potency of vaccines against emerging and co-circulating SARS-CoV-2 variants.


Subject(s)
COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.21.481262

ABSTRACT

Wildlife animals may be susceptible for multiple infectious agents of public health or veterinary relevance, thereby potentially forming a reservoir that bears the constant risk of re-introduction into the human or livestock population. Here, we serologically investigated 493 wild ruminant samples collected in the 2021/22 hunting season in Germany for the presence of antibodies against the severe acute respiratory coronavirus 2 (SARS-CoV-2) and four viruses pathogenic for domestic ruminants, namely the orthobunyavirus Schmallenberg virus (SBV), the reovirus bluetongue virus (BTV) and ruminant pestiviruses like bovine viral diarrhoea virus or border disease virus. The animal species comprised fallow deer, red deer, roe deer, mouflon and wisent. For coronavirus serology, additional 307 fallow, roe and red deer samples collected between 2017 and 2020 at three military training areas were included. While antibodies against SBV could be detected in about 13.6% of the samples collected in 2021/22, only one fallow deer of unknown age tested positive for anti-BTV antibodies and all samples reacted negative for antibodies against ruminant pestiviruses. In an ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2, 25 out of 493 (5.1%) samples collected in autumn and winter 2021/22 scored positive. This sero-reactivity could not be confirmed by the highly specific virus neutralization test, occurred also in 2017, 2018 and 2019, i.e. prior to the human SARS-CoV-2 pandemic, and was likewise observed against the RBD of the related SARS-CoV-1. Therefore, the SARS-CoV-2-seroreactivity was most likely induced by another, hitherto unknown deer virus belonging to the subgenus Sarbecovirus of betacoronaviruses.


Subject(s)
Virus Diseases , Bluetongue
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.28.450190

ABSTRACT

Emerging variants of concern (VOCs) drive the SARS-CoV-2 pandemic. We assessed VOC B.1.1.7, now prevalent in several countries, and VOC B.1.351, representing the greatest threat to populations with immunity to the early SARS-CoV-2 progenitors. B.1.1.7 showed a clear fitness advantage over the progenitor variant (wt-S614G) in ferrets and two mouse models, where the substitutions in the spike glycoprotein were major drivers for fitness advantage. In the "superspreader" hamster model, B.1.1.7 and wt-S614G had comparable fitness, whereas B.1.351 was outcompeted. The VOCs had similar replication kinetics as compared to wt-S614G in human airway epithelial cultures. Our study highlights the importance of using multiple models for complete fitness characterization of VOCs and demonstrates adaptation of B.1.1.7 towards increased upper respiratory tract replication and enhanced transmission in vivo. Summary sentenceB.1.1.7 VOC outcompetes progenitor SARS-CoV-2 in upper respiratory tract replication competition in vivo.


Subject(s)
Severe Acute Respiratory Syndrome , Seizures
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.13.443734

ABSTRACT

More than a year after emergence of the SARS-CoV-2 pandemic, multiple first-generation vaccines are approved and available for vaccination. Still, many challenges remain. The ongoing vaccination programs across the globe suffer from insufficient vaccine supply. The virus is adapting to the human host and novel variants are circulating that are neutralised less efficiently by antibodies raised against ancestral SARS-CoV-2 variants. Here, we describe CV2CoV, a second-generation mRNA vaccine developed for enhanced protein expression and immunogenicity. CV2CoV supports increased levels of protein expression in cell culture compared to our clinical candidate CVnCoV. Vaccination with CV2CoV induces high levels of virus neutralising antibodies with accelerated kinetics in rats. Robust antibody responses are reflected in significant cross-neutralisation of circulating SARS-CoV-2 variants of concern, i.e. B.1.1.7 and B.1.351. Together, these results underline the value of CV2CoV as next-generation SARS-CoV-2 mRNA vaccine

9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.07.21252267

ABSTRACT

Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the 'gold standard' virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.


Subject(s)
COVID-19
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.22.435960

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic necessitates the fast development of vaccines as the primary control option. Recently, viral mutants termed "variants of concern" (VOC) have emerged with the potential to escape host immunity. VOC B.1.351 was first discovered in South Africa in late 2020, and causes global concern due to poor neutralization with propensity to evade preexisting immunity from ancestral strains. We tested the efficacy of a spike encoding mRNA vaccine (CVnCoV) against the ancestral strain BavPat1 and the novel VOC B.1.351 in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice developed elevated SARS-CoV-2 RBD-specific antibody as well as neutralization titers against the ancestral strain BavPat1. Neutralization titers against VOC B.1.351 were readily detectable but significantly reduced compared to BavPat1. VOC B.1.351-infected control animals experienced a delayed course of disease, yet nearly all SARS-CoV-2 challenged naive mice succumbed with virus dissemination and high viral loads. CVnCoV vaccine completely protected the animals from disease and mortality caused by either viral strain. Moreover, SARS-CoV-2 was not detected in oral swabs, lung, or brain in these groups. Only partial protection was observed in mice receiving the formalin-inactivated virus preparation. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV shows complete disease protection against the novel VOC B.1.351 in our studies.

12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.27.357558

ABSTRACT

During the evolution of SARS-CoV-2 in humans a D614G substitution in the spike (S) protein emerged and became the predominant circulating variant (S-614G) of the COVID-19 pandemic. However, whether the increasing prevalence of the S-614G variant represents a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains elusive. Here, we generated isogenic SARS-CoV-2 variants and demonstrate that the S-614G variant has (i) enhanced binding to human ACE2, (ii) increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a novel human ACE2 knock-in mouse model, and (iii) markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Collectively, our data show that while the S-614G substitution results in subtle increases in binding and replication in vitro, it provides a real competitive advantage in vivo, particularly during the transmission bottle neck, providing an explanation for the global predominance of S-614G variant among the SARS-CoV-2 viruses currently circulating.


Subject(s)
Seizures , COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.17.339051

ABSTRACT

The visualization of viral pathogens in infected tissues is an invaluable tool to understand spatial virus distribution, localization, and cell tropism in vivo. Commonly, virus-infected tissues are analyzed using conventional immunohistochemistry in paraffin-embedded thin sections. Here, we demonstrate the utility of volumetric three-dimensional (3D) immunofluorescence imaging using tissue optical clearing and light sheet microscopy to investigate host-pathogen interactions of pandemic SARS-CoV-2 in ferrets at a mesoscopic scale. The superior spatial context of large, intact samples (> 150 mm3) allowed detailed quantification of interrelated parameters like focus-to-focus distance or SARS-CoV-2-infected area, facilitating an in-depth description of SARS-CoV-2 infection foci. Accordingly, we could confirm a preferential infection of the ferret upper respiratory tract by SARS-CoV-2 and emphasize a distinct focal infection pattern in nasal turbinates. Conclusively, we present a proof-of-concept study for investigating critically important respiratory pathogens in their spatial tissue morphology and demonstrate the first specific 3D visualization of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Tumor Virus Infections
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.266825

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions. The extent of natural infections of animals, however, is still largely unknown. Serological methods will be useful tools for tracing SARS-CoV-2 infections in animals once test systems are validated for use in different species. Here, we developed an indirect multi-species ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The newly established ELISA was validated using 59 sera of infected or vaccinated animals including ferrets, raccoon dogs, hamsters, rabbits, chickens, cattle and a cat, and a total of 220 antibody-negative sera of the same animal species. Overall, a diagnostic specificity of 100.0% and sensitivity of 98.31% was achieved, and the functionality with every species included in this study could be demonstrated. Hence, a versatile and reliable ELISA protocol was established that enables high-throughput antibody detection in a broad range of animal species, which may be used for outbreak investigations, to assess the seroprevalence in susceptible species or to screen for reservoir or intermediate hosts.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.265645

ABSTRACT

A novel coronavirus (SARS-CoV-2) has devastated the globe as a pandemic that has killed more than 800,000 people. Effective and widespread vaccination is still uncertain, so many scientific efforts have been directed towards discovering antiviral treatments. Many drugs are being investigated to inhibit the coronavirus main protease, 3CLpro, from cleaving its viral polyprotein, but few publications have addressed this proteases interactions with the host proteome or their probable contribution to virulence. Too few host protein cleavages have been experimentally verified to fully understand 3CLpros global effects on relevant cellular pathways and tissues. Here, we set out to determine this proteases targets and corresponding potential drug targets. Using a neural network trained on coronavirus proteomes with a Matthews correlation coefficient of 0.983, we predict that a large proportion of the human proteome is vulnerable to 3CLpro, with 4,460 out of approximately 20,000 human proteins containing at least one predicted cleavage site. These cleavages are nonrandomly distributed and are enriched in the epithelium along the respiratory tract, brain, testis, plasma, and immune tissues and depleted in olfactory and gustatory receptors despite the prevalence of anosmia and ageusia in COVID-19 patients. Affected cellular pathways include cytoskeleton/motor/cell adhesion proteins, nuclear condensation and other epigenetics, host transcription and RNAi, coagulation, pattern recognition receptors, growth factor, lipoproteins, redox, ubiquitination, and apoptosis. This whole proteome cleavage prediction demonstrates the importance of 3CLpro in expected and nontrivial pathways affecting virulence, lead us to propose more than a dozen potential therapeutic targets against coronaviruses, and should therefore be applied to all viral proteases and experimentally verified.


Subject(s)
Olfaction Disorders , COVID-19
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.20.258772

ABSTRACT

Topic modeling is frequently employed for discovering structures (or patterns) in a corpus of documents. Its utility in text-mining and document retrieval tasks in various fields of scientific research is rather well known. An unsupervised machine learning approach, Latent Dirichlet Allocation (LDA) has particularly been utilized for identifying latent (or hidden) topics in document collections and for deciphering the words that define one or more topics using a generative statistical model. Here we describe how SARS-CoV-2 genomic mutation profiles can be structured into a Bag of Words to enable identification of signatures (topics) and their probabilistic distribution across various genomes using LDA. Topic models were generated using ~47000 novel corona virus genomes (considered as documents), leading to identification of 16 amino acid mutation signatures and 18 nucleotide mutation signatures (equivalent to topics) in the corpus of chosen genomes through coherence optimization. The document assumption for genomes also helped in identification of contextual nucleotide mutation signatures in the form of conventional N-grams (e.g. bi-grams and tri-grams). We validated the signatures obtained using LDA driven method against the previously reported recurrent mutations and phylogenetic clades for genomes. Additionally, we report the geographical distribution of the identified mutation signatures in SARS-CoV-2 genomes on the global map. Use of the non-phylogenetic albeit classical approaches like topic modeling and other data centric pattern mining algorithms is therefore proposed for supplementing the efforts towards understanding the genomic diversity of the evolving SARS-CoV-2 genomes (and other pathogens/microbes).

18.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.19.256800

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China at the end of 2019, and became pandemic. The zoonotic virus most likely originated from bats, but definite intermediate hosts have not yet been identified. Raccoon dogs (Nyctereutes procyonoides) are kept for fur production, in particular in China, and were suspected as potential intermediate host for both SARS-CoV6 and SARS-CoV2. Here we demonstrate susceptibility of raccoon dogs for SARS-CoV-2 infection after intranasal inoculation and transmission to direct contact animals. Rapid, high level virus shedding, in combination with minor clinical signs and pathohistological changes, seroconversion and absence of viral adaptation highlight the role of raccoon dogs as a potential intermediate host. The results are highly relevant for control strategies and emphasize the risk that raccoon dogs may represent a potential SARS-CoV-2 reservoir. Our results support the establishment of adequate surveillance and risk mitigation strategies for kept and wild raccoon dogs. Article Summary LineRaccoon dogs are susceptible to and efficiently transmit SARS-CoV2 and may serve as intermediate host


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.10.144188

ABSTRACT

In late 2019, an outbreak of a severe respiratory disease caused by an emerging coronavirus, SARS-CoV-2, resulted in high morbidity and mortality in infected humans1. Complete understanding of COVID-19, the multi-faceted disease caused by SARS-CoV-2, requires suitable small animal models, as does the development and evaluation of vaccines and antivirals2. Because age-dependent differences of COVID-19 were identified in humans3, we compared the course of SARS-CoV-2 infection in young and aged Syrian hamsters. We show that virus replication in the upper and lower respiratory tract was independent of the age of the animals. However, older hamsters exhibited more pronounced and consistent weight loss. In situ hybridization in the lungs identified viral RNA in bronchial epithelium, alveolar epithelial cells type I and II, and macrophages. Histopathology revealed clear age-dependent differences, with young hamsters launching earlier and stronger immune cell influx than aged hamsters. The latter developed conspicuous alveolar and perivascular edema, indicating vascular leakage. In contrast, we observed rapid lung recovery at day 14 after infection only in young hamsters. We propose that comparative assessment in young versus aged hamsters of SARS-CoV-2 vaccines and treatments may yield valuable information as this small-animal model appears to mirror age-dependent differences in human patients.


Subject(s)
Respiratory Tract Diseases , Adenocarcinoma, Bronchiolo-Alveolar , Weight Loss , COVID-19 , Edema
20.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3578792

ABSTRACT

Background: A novel zoonotic SARS-related coronavirus emerged in China at the end of 2019. The novel SARS-CoV-2 became pandemic within weeks and the number of human infections and severe cases is increasing. The role of potential animal hosts is still understudied.Methods: We intranasally inoculated fruit bats (Rousettus aegyptiacus; n=9), ferrets (n=9), pigs (n=9) and chickens (n=17) with 105 TCID50 of a SARS-CoV-2 isolate per animal. Animals were monitored clinically and for virus shedding. Direct contact animals (n=3) were included. Animals were humanely sacrificed for virological and immune-pathohistological analysis at different time points.Findings: Under these settings, pigs and chickens were not susceptible to SARS-CoV-2. All swabs as well as organ samples and contact animals remained negative for viral RNA, and none of the animals seroconverted. Rousettus aegyptiacus fruit bats experienced a transient infection, with virus detectable by RT-qPCR, immunohistochemistry (IHC) and in situ hybridization (ISH) in the nasal cavity, associated with rhinitis. Viral RNA was also identified in the trachea, lung and lung associated lymphatic tissue. One of three contact bats became infected. More efficient virus replication but no clinical signs were observed in ferrets with transmission to all direct contact animals. Prominent viral RNA loads of up to 104 viral genome copies/ml were detected in the upper respiratory tract. Mild rhinitis was associated with viral antigen detection in the respiratory and olfactory epithelium. Both fruit bats and ferrets developed SARS-CoV-2 reactive antibodies reaching neutralizing titers of up to 1:1024.Interpretation: Pigs and chickens could not be infected intranasally by SARS-CoV-2, whereas fruit bats showed characteristics of a reservoir host. Virus replication in ferrets resembled a subclinical human infection with efficient spread. These animals might serve as a useful model for further studies e.g. testing vaccines or antivirals.Funding Statement: Intramural funding of the German Federal Ministry of Food and Agriculture provided to the Friedrich-Loeffler-Institut.Declaration of Interests: All authors declare no competing interest.Ethics Approval Statement: The animal experiments were evaluated and approved by the ethics committee of the State Office of Agriculture, Food safety, and Fishery in Mecklenburg – Western Pomerania (LALLF M-V: LVL MV/TSD/7221.3-2-010/18-12). All procedures were carried out in approved biosafety level 3 (BSL3) facilities.


Subject(s)
Tay-Sachs Disease
SELECTION OF CITATIONS
SEARCH DETAIL